2 research outputs found

    Submodular Maximization with Matroid and Packing Constraints in Parallel

    Full text link
    We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a 11/eϵ1-1/e-\epsilon approximation for monotone functions and a 1/eϵ1/e-\epsilon approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is O(log2n/ϵ3)O(\log^2{n}/\epsilon^3), which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a 1/eϵ1/e-\epsilon approximation using O(log(n/ϵ)log(1/ϵ)log(n+m)/ϵ2)O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2) parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a 11/eϵ1-1/e-\epsilon approximation in O(log(n/ϵ)log(m)/ϵ2)O(\log(n/\epsilon)\log(m)/\epsilon^2) parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective. Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function

    Unconstrained Submodular Maximization with Constant Adaptive Complexity

    Full text link
    In this paper, we consider the unconstrained submodular maximization problem. We propose the first algorithm for this problem that achieves a tight (1/2ε)(1/2-\varepsilon)-approximation guarantee using O~(ε1)\tilde{O}(\varepsilon^{-1}) adaptive rounds and a linear number of function evaluations. No previously known algorithm for this problem achieves an approximation ratio better than 1/31/3 using less than Ω(n)\Omega(n) rounds of adaptivity, where nn is the size of the ground set. Moreover, our algorithm easily extends to the maximization of a non-negative continuous DR-submodular function subject to a box constraint and achieves a tight (1/2ε)(1/2-\varepsilon)-approximation guarantee for this problem while keeping the same adaptive and query complexities.Comment: Authors are listed in alphabetical orde
    corecore